Occupational exposure to mineral fibres. Biomarkers of oxidative damage and antioxidant defence and associations with DNA damage and repair.
نویسندگان
چکیده
In order to study the effect of mineral wool exposure on oxidative DNA damage and lipid peroxidation, an epidemiological study was conducted in a mineral wool factory in Slovakia. Altogether 141 subjects were investigated (21-58 years old), 43 controls (20 men and 23 women: 27 non-smokers, 16 smokers) and 98 exposed (75 men and 23 women: 61 non-smokers, 37 smokers). We found higher malondialdehyde (MDA) levels in the group of all exposed workers (P = 0.025) and in exposed non-smokers (P = 0.003) and a significantly suppressed activity of ceruloplasmin oxidase (P = 0.02, P < 0.02, respectively) and catalase (CAT) (P = 0.04, P = 0.01, respectively) in these groups. The activity of glutathione S-transferase (GST) was affected by exposure to mineral wool; levels were significantly lower in all exposed subjects (P = 0.04), in the exposed non-smokers (P = 0.03) and in exposed men (P < 0.01). Concentrations of vitamin C in plasma and the ferric-reducing activity of plasma (FRAP) were not affected by the mineral wool exposure. There was a significant negative correlation between the activity of glutathione peroxidase (GPX) and MDA in the whole group (P < 0.01) and in the exposed group and between CAT activity and MDA in all subjects (P < 0.01). GST activity correlated inversely with oxidized pyrimidines in lymphocyte DNA, in almost all subgroups. We found significant negative correlations between DNA repair and GPX in all subjects (P = 0.03) as well as in control men (P < 0.03) and between DNA repair and CAT in all control subjects (P < 0.02) and in control men (P < 0.01). Interestingly, we found a positive correlation between DNA repair and MDA in all subjects (P < 0.01) and in all exposed subjects (P < 0.03). The presented results indicate that mineral wool exposure induces an increase in oxidative damage to biomolecules especially in the group of male non-smokers. However, optimal levels of antioxidants could have a protective effect. Biomarkers such as MDA, antioxidant enzymes and antioxidant vitamins measured in blood may be useful biomarkers of oxidative stress and antioxidant protection. We do not recommend FRAP as a marker of antioxidant status as interference from other constituents can provide false or confusing results. Our study supports the idea that there might also be other mechanisms by which antioxidant enzymes (especially GST) protect cells against oxidative DNA damage.
منابع مشابه
OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage
Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...
متن کاملDiagnostic Biomarkers of Heat Stress Induced- DNA in Occupational Exposure: A Systematic Review
Introduction: Climate change and hot processes in the workplaces has led to an increase in the effects of heat stress on employed people, which has become a major concern, especially in tropical and subtropical countries. Early detection of biomarkers in induction of heat stress-related DNA damage can be used in the identification and evaluation of health and safety, including occupational heal...
متن کاملEffect of Exposure to Ionizing Radiation on Biomarker of Oxidative Damage of DNA
Introduction: one of the most important complications of exposure to ionizing radiation is emergence of cancer tumors, which happens as a result of oxidative DNA. Therefore, the present study was conducted, aimed to measuring 8-DIHYDROxy- 2’- DEOXYGUANOSINE (8-OHdG) level in radiographers’ urine as oxidative damage biomarker, as well as comparing this biomarker with cumulative effective doses....
متن کاملAssociation of Exposure to Polycyclic Aromatic Hydrocarbons with Inflammation, Oxidative DNA Damage and Renal-pulmonary Dysfunctions in Barbecue Makers in Southern Nigeria
Background: Multiple organ dysfunctions have been linked to exposure to polycyclic aromatic hydrocarbons (PAH) and oxidative stress (OS), oxidative DNA damage, and inflammatory response to PAH have been implicated. The biomarkers of OS (malondialdehyde (MDA), total plasma peroxide (TPP), total antioxidant capacity (TAC), glutathione (GSH), nitric oxide (NO), oxidative stress index (OSI)); 8-hy...
متن کاملStudies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay
Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mutagenesis
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2008